Q: What is simplest rep of a homology class?

Setting: M^3 clsd orient irreducible.

Any class in $H_2(M; \mathbb{Z})$ can be rep by a smooth clsd surface since $H_2(M) \cong H'_1(M) = [M, S']$ so can take $S = f^{-1}(pt)$ for $f: M \to S'$. An oriented surface $S \subseteq M$ is nice when no component is 0 in $H_2(M)$. In particular, every comp of S has $\chi \leq 0$. Define

$$\| c \|_{Th} = \min \left\{ -\chi(S) \mid S \text{ is a nice rep of } c \right\}$$

Then a) $\| a + b \|_{Th} \leq \| a \|_{Th} + \| b \|_{Th}$

b) $\| k \cdot c \|_{Th} = |k| \cdot \| c \|_{Th}$

c) When M is orientable, $\| c \|_{Th} = 0 \iff c = 0$.

A nice surface is taut when $|\chi(S)| = \| [S] \|_{Th}$.
Lemma: A taut surface S is incompressible.

Pf: Assume S is connected. [Don't really use, just makes notation simpler.] Suppose D is a compressing disc for S. Let $S' = (S \setminus N(\partial D)) \cup D_1 \cup D_2$

$\partial S' = \partial D$

which has $[S'] = [S]$ and $\chi(S') = \chi(S) + 2$

If ∂D does not sep S, then S' is connected, so S' is nice as S is, but this contradicts that S is taut. So ∂D does sep S and $S' = S_1 \cup S_2$, which can't be nice. So say $[S_1] = 0$. If $\chi(S_1) \leq 0$ then $[S_2] = [S]$ with $-\chi(S_2) \leq -\chi(S) - 2$ again violating that S is taut. So $S_1 = \emptyset$

$\Rightarrow \partial D$ bounds a disc in S. So S is incomp.

Pf of \emptyset: Immediate from lemma.
Pf of (a): Let A, B be taut surf for a, b.

As they are incomp, can isotope so are transv and every component of $A \cap B$ is essential in both A and B.

Idea: If $C \subseteq A \cap B$ bounds disc in A it must also bound one in B. These two discs bound a ball in M, and isotope across this to reduce $\#A \cap B$.

So every comp. of $A \setminus B$ and $B \setminus A$ has $\chi \leq 0$.

Let C be the orient sum of A and B

No comp of C is S^2,

so if C' is the nice surface obtained by deleting any sep. comps, we have

$$-\chi(C') \leq -\chi(C) = -\chi(A) - \chi(B)$$

Since $[C'] = a + b$, get $\|a + b\|_{Th} \leq \|a\|_{Th} + \|b\|_{Th}$.

Pf of (b): Hint: Show any S rep K a

consists of K surfaces each rep a.

94
Thm: \(\| \cdot \|_{\mathcal{H}} \) extends from \(H_2(M;\mathbb{Z}) \) to a norm on \(H_2(M;\mathbb{R}) \). Its unit ball is a finite rational polytope.

Idea: Extend to \(H_2(M;\mathbb{Q}) \) by making it linear on rays.

Then extend by cont to \(H_2(M;\mathbb{R}) \). Only uses that \(\| \cdot \|_{\mathcal{H}} \) takes integer values on \(H_2(M;\mathbb{Z}) \).

Thm: Suppose \(S \) is a compact leaf of a co-orient taut fol \(\mathcal{F} \). Then \(S \) is taut.

[Gabai] Suppose \(S \) is a taut surface in a closed orient irreducible \(M^3 \). Then \(\exists \) a co-orient taut fol \(\mathcal{F} \) with \(S \) as a compact leaf.

Cor: If define \(\| \cdot \|_{\mathcal{H}} \) using immersed surfaces or just \(\mathcal{F} \rightarrow M \) get the same norm.
Thm: Suppose F is a cpt leaf of a co-orient taut \mathcal{F}. Then F is taut.

Pf idea: Suppose S is any taut surface with $[S] = [F]$. As S is incomp, can homotope S so it is trans to \mathcal{F} except at finitely many saddle tangencies. Two kinds, dep on whether $T_p S$ and $T_p F$ have the same orient. Set $I_p = \#$ where agree and $I_n = \#$ where disagree. Recall $I_p + I_n = -\chi(S)$.

Lemma: If $e(T\mathcal{F})$ is the Euler class of $T\mathcal{F}$ in $H^2(M)$ then $e(T\mathcal{F})([S]) = I_n - I_p$

Assuming this,

$$\| [S] \|_{T_n} = -\chi(S) = I_p + I_n \geq I_p - I_n$$

$$= -e(T\mathcal{F})([S]) = -e(T\mathcal{F})([F])$$

$$= -e(T\mathcal{F}|_{\mathcal{F} = TF})([F])$$

$$= -\chi(F).$$

So F is also taut. (no cusp of F is sep since \mathcal{F} has a c1sc(t) trans.)