Suppose S is a hyperbolic surface with any geodesic ideal tri I and fixed cusp nbhds C_i.

Have a $\pi_1 S$ equiv map $\bar{I} \to \mathbb{R}^2$ senting each ideal tri to a linear one w/ roots in V, where $V \subseteq L^+$ cor. to C_i.

Gives a "bent plane" X inside L^+ that projects out to the orig. geod. ideal tri.

The orig. tri. is canonical $\iff X = \partial P$, P convex hull of V. $\iff X$ bounds a convex region inside L^+ \iff each pair of tri meeting along an edge "fold up" not down as in \bigcirc
Purely local and only need check for one edge of X in each $\Pi_i S$-orbit, i.e., once for each edge of J down stairs. [Aside about Penner coor, horoball decorations...]

If pair folds down, do a move along this edge to create J_1.

Get a seq J_1, J_2, \ldots with cor X_1, X_2, \ldots inside L^* that "move down."

Prop: This must terminate.

An edge class is a segment joining two elts in V, together with its $\Pi_i S$ orbit.

Claim: Only finitely many edge classes below the orig. X.

Only finitely many vertex classes, so suffices to bound the number of edge classes ending at a fixed $v_0 \in V$.
Consider $f: X \to \mathbb{R}$ by $f(x) = \langle x, x \rangle$ which is cont. and $\Pi_1 S$ equiv. It is bounded since

\[X = \text{compact, } \text{of } S \text{ adding one pt at cusp} \]

Say $f(x) \leq [-r^2, 0]$

Lemma: $u, v \in L^+$. Then

a) $\langle u - v, u - v \rangle = -2 \langle u, v \rangle \geq 0$

b) $\min \langle x, x \rangle$ for $x = (1-t)u + tv$ $t \in [0,1]$ is at the mid pt $\langle \frac{u+v}{2}, \frac{u+v}{2} \rangle = \langle \frac{u+v}{2} \rangle$

c) The dist between the horocircles H_u and H_v is $\log \left(\frac{\langle u, v \rangle}{-2} \right)$.

Pf: a) is because $u - v$ is space-like.

b) is since $\langle x, x \rangle = 2(1-t)t \langle u, v \rangle$ and $\langle u, v \rangle \leq 0$.

c) Transform to reduce to $u = (t, 0, t)$ and $v = (-t, 0, t)$ and see $\text{dist}(H_u, H_v) = 2 \log t = \log t^2 = \log \left(\frac{\langle u, v \rangle}{-2} \right)$.

Pf of claim: An edge e from V_0 to V_1 lying below X must sat $\langle x, x \rangle \geq -r^2$ along the seg (V_0, V_1)

$\Rightarrow \langle V_0, V_1 \rangle \geq -r^2 \Rightarrow \text{dist}(H_{V_0}, H_{V_1}) \leq \log \frac{r^2}{2}$

Now there are only finitely many orbits of
such horoballs \(H_{v_i} \):
and hence finitely many such edge classes.

This proves the claim and hence the prop.

Remarks: 1) To get final cellulation have to erase any edges \(\square \rightarrow \square \) where there is a fold.

2) For \(n=2 \), the above proves the lemma about finiteness of faces of the canonical cellulation that I skipped last time.

Case of 3-mflds is very similar, with flip replaced by \(2 \rightarrow 3 \) and \(3 \rightarrow 2 \) moves.

Still a local test on faces and valence 3 edges, depending on whether things are
concave/convex in $\mathbb{R}^{3,1}$ inside the light cone.
For details, see Week's paper.

New issue: creation of neg. orient tets.

[Diagrams of 2D and 3D geometrical transformations]

Now the "move down" algorithm can get stuck.