1. Fix a prime p. Show that the following subgroup of $GL_2(F_p)$ is solvable:

$$B = \left\{ \begin{pmatrix} x & z \\ 0 & y \end{pmatrix} \middle| x, y \in F_p^\times, z \in F_p \right\}$$

Here, the group operation is just matrix multiplication.

2. (a) Prove directly from the definition that S_4 is solvable.

(b) Prove that A_5 is simple using the following outline.

(i) Show A_5 has 5 distinct conjugacy classes of elements, and count the number of elements in each class.

(ii) For any normal subgroup $H \triangleleft G$ show that H is a union of conjugacy classes of G.

(iii) If $N \triangleleft A_5$ use that $|N|$ divides $|A_5|$ and parts (i) and (ii) to show that $N = \{1\}$ or A_5.

Alternatively, give a geometric proof using the fact that A_5 is the group of Euclidean isometries of a regular dodecahedron.

Remark: A_5 is the smallest of all the simple groups. In fact, every group of order less than 60 is solvable.

(c) Use (b) to show that S_n is not solvable for $n \geq 5$.

3. (Section 14.7, #12) Let L be the Galois closure of a finite extension $\mathbb{Q}(\alpha)$ over \mathbb{Q}. If p is a prime dividing the order of $Gal(L/\mathbb{Q})$, show that there is a subfield F of L with $[L:F] = p$ and $L = F(\alpha)$.

Hint: You'll need to use Theorem 18 from Section 4.5: if p is a prime dividing the order of a finite group G, then G has an element of order p.

4. (Section 14.7, #13) Let $F \subset \mathbb{R}$ be a field. Let a be an element of F which has a real n^{th} root $\alpha = \sqrt[n]{a}$, and set $K = F(\alpha)$. Prove that if L is any Galois extension of F contained in K then $[L:F] \leq 2$.

5. For a field k, here are some basic problems for varieties in k^2, where we take the coordinates to be (x, y). Except for part (b), assume that k is algebraically closed.

(a) Let V be the x-axis, i.e. $V = V(y)$. Prove that V is irreducible. Hint: Show a prime ideal is radical.

(b) Give an example of a field k, necessarily not algebraically closed, for which the x-axis is reducible.

(c) Prove that $V = V(x - y)$ is irreducible.

(d) Prove that $S = \{(a, a) \in k^2 \mid a \neq 1\}$ is not an algebraic variety if $k = \mathbb{C}$.

(e) What is the decomposition of $V = V(x^2 - y^2)$ into irreducibles? **Warning:** The answer depends on k!