1. Fix a prime \(p \). Show that the following subgroup of \(\text{GL}_2 \mathbb{F}_p \) is solvable:

\[
B = \left\{ \left(\begin{array}{cc} x & z \\ 0 & y \end{array} \right) \right| x, y \in \mathbb{F}_p^\times, z \in \mathbb{F}_p \right\}
\]

Here, the group operation is just matrix multiplication.

2. (a) Prove directly from the definition that \(S_4 \) is solvable.

(b) Prove that \(A_5 \) is simple using the following outline.

- (i) Show \(A_5 \) has 5 distinct conjugacy classes of elements, and count the number of elements in each class.
- (ii) For any normal subgroup \(H \triangleleft G \) show that \(H \) is a union of conjugacy classes of \(G \).
- (iii) If \(N \triangleleft A_5 \) use that \(|N| \) divides \(|A_5| \) and parts (i) and (ii) to show that \(N = \{1\} \) or \(A_5 \).

Alternatively, give a geometric proof using the fact that \(A_5 \) is the group of Euclidean isometries of a regular dodecahedron.

Remark: \(A_5 \) is the smallest of all the simple groups. In fact, every group of order less than 60 is solvable.

(c) Use (b) to show that \(S_n \) is not solvable for \(n \geq 5 \).

3. (Section 14.7, #12) Let \(L \) be the Galois closure of a finite extension \(\mathbb{Q}(\alpha) \) over \(\mathbb{Q} \). If \(p \) is a prime dividing the order of \(\text{Gal}(L/\mathbb{Q}) \), show that there is a subfield \(F \) of \(L \) with \([L:F] = p \) and \(L = F(\alpha) \).

Hint: You’ll need to use Theorem 18 from Section 4.5: if \(p \) is a prime dividing the order of a finite group \(G \), then \(G \) has an element of order \(p \).

4. (Section 14.7, #13) Let \(F \subset \mathbb{R} \) be a field. Let \(a \) be an element of \(F \) which has a real \(n^{th} \) root \(\alpha = \sqrt[n]{a} \), and set \(K = F(\alpha) \). Prove that if \(L \) is any Galois extension of \(F \) contained in \(K \) then \([L:F] \leq 2 \).

5. For a field \(k \), here are some basic problems for varieties in \(k^2 \), where we take the coordinates to be \((x, y)\). Except for part (b), assume that \(k \) is algebraically closed.

(a) Let \(V \) be the \(x \)-axis, i.e. \(V = V(y) \). Prove that \(V \) is irreducible. Hint: Show a prime ideal is radical.

(b) Give an example of a field \(k \), necessarily not algebraically closed, for which the \(x \)-axis is reducible.

(c) Prove that \(V = V(x - y) \) is irreducible.

(d) Prove that \(S = \{(a, a) \in k^2 \mid a \neq 1\} \) is not an algebraic variety if \(k = \mathbb{C} \).

(e) What is the decomposition of \(V = V(x^2 - y^2) \) into irreducibles? Warning: The answer depends on \(k \)!