Lecture 3: Principal Ideal Domains

Last time:

Euclidean Domain: An integral domain R with $N: R \to \mathbb{Z}_{\geq 0}$ sat $N(0) = 0$ and \(\forall a, b \in R \) with $b \neq 0$ then \(a = qb + r \) with $r = 0$ or $N(r) < N(b)$.

Thm: In a Euclidean Domain every ideal is principal, i.e. $I = (a) = \{ ra | r \in R \}$.

Principal Ideal Domain: An integral domain where every ideal is principal.

Ex: \mathbb{Z}, Euclidean domains, $\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$ ***Not Euclidean***, see text.

Non-ex: $\mathbb{Z}[\sqrt{5}]$, e.g. $(2, 1+\sqrt{5})$ is a non-principal ideal [Compare with HW #2].

[Goal (next lecture) P.I.D.s have unique factorization.]

Thm: If R is a PID, then for $a, b \in R$, suppose $(a, b) = (g)$. Then

1. g is a gcd for a, b.
2. $g = sa + tb$ for some $s, t \in R$.

Pf: (1) is immediate from $(a, b) = (g)$. Since $a, b \in (g)$, we must have $g | a$ and $g | b$. If $d | a$ and $d | b$, then $d | g$ by (1). So g is a gcd.

Note: Some rings have gcd's but not (2), e.g. $\mathbb{Q}[x, y]$. Then $\gcd(x, y) = 1$ by can't have $1 = px + qy$.

R: an integral domain, $r \in R$ non-zero.

Unit: $\exists s \in R$ with $rs = 1$.

Reducible: $r = ab$ with a, b nonunits.

Irreducible: $r = ab \Rightarrow$ one of a, b is a unit.

Prime: $r | ab \Rightarrow r | a$ or $r | b$.

Prop: A prime $r \in R$ is irreducible.

Pf: If $r = ab$ then can assume $r | a$, i.e. $a = cr$.

Then $r = ab = crb \Rightarrow (1-cb)r = 0 \Rightarrow cb = 1 \Rightarrow b$ is a unit.
However, 3 is irreducible in \(\mathbb{Z}[\sqrt{-5}] \) (on HW), but not prime as \(3^2 = 9 = (2 + \sqrt{-5})(2 - \sqrt{-5}) \) and 3 divides neither \(2 + \sqrt{-5} \) nor \(2 - \sqrt{-5} \).

I \in R \text{ a proper ideal } (I \neq R).

Prime: \(a, b \in I \Rightarrow a \in I \text{ or } b \in I \Leftrightarrow R/I \text{ is also an integral domain}. \)

Maximal: \(\forall \text{ an ideal } I \neq J \neq R \Rightarrow R/I \text{ is a field}. \)

Note: \((r) \) is a prime ideal \(\Leftrightarrow r \text{ is a prime elt.} \)

Pf: \(s \in (r) \Leftrightarrow s = ar \Leftrightarrow r \mid s. \) So the two statements are really the same.

Thm: In a PID, every prime ideal is maximal.

Pf: Let \((p) \leq R \) be prime \(\Rightarrow p \text{ is prime hence irreducible}. \)

Suppose \((p) \leq (m). \) Then \(p = rm. \) As \(p \) is irreducible, either:

- \(a \) \(r \text{ is a unit } \Rightarrow (p) = (m) \)
- \(b \) \(m \text{ is a unit } \Rightarrow (m) = R. \)

Hence \((p) \) is maximal.

Cor: In a PID, \(r \text{ is prime } \Leftrightarrow r \text{ is irreducible}. \)

Pf: Same as the thm, since max ideals are prime.
Note: \(\mathbb{Z}[x] \) is not a PID, since \((x)\) is prime but not maximal. [This despite the fact that \(F[x] \) is Euclidean when \(F \) is a field.]

\[\text{R int. domain. Elements} \ r \ \text{and} \ s \ \text{are associate if} \ r = us \ \text{for some unit} \ u \in R. \]

\underline{Unique \ Factorization \ Domain}: \ An \ int. \ domain \ where \ for \ every \ non-zero \ non-unit \ \ r:\

\(a) \ r = p_1 \cdot p_2 \cdots p_n \) where the \(p_i \) are irreducible.

\(b) \) This is unique in that any other factorization \(r = q_1 \cdots q_m \) can be reordered so that \(p_i \) is an associate of \(q_i. \) [In particular \(n = m. \)]

\underline{Ex}: PID's [Next time]

Non Ex: \(\mathbb{Z}[\sqrt{-5}] \) has \(a \) but not \(b \)

\(\mathbb{Z}[\sqrt{2}; \ n \in \mathbb{Z}_+], \) doesn't have \(a \) as

\[2 = \sqrt{2} \cdot \sqrt{2} = (4\sqrt{2})^4 = (8\sqrt{2})^8 = \ldots \]